您好,欢迎访问宁夏科协官网

设为首页 | 收藏本站

13
2023年07月

1565亿元!史上最烧钱攻关项目,它到底是要做啥?

来源:宁夏科协   作者:宁夏科协

  可控核聚变模拟太阳中的核反应,被视为理想的清洁能源,目前该领域在建的规模最大的研发项目——国际热核聚变实验堆(ITER)也被寄予厚望。它将帮助科学家延长可控核聚变反应的持续时间,测试相关技术,最终实现稳定供能。

  但是另一方面,ITER 的建设也是对工程技术的巨大挑战。自从项目启动以来,它的开机时间多次推迟,预算也不断增加。最近,《科学美国人》(Scientific American)记者查尔斯·塞费(Charles Seife)报道,ITER 很可能无法在 2025 年如期启动,甚至没有人知道明确的时间计划和因此增加的预算支出[1]。

  ITER 没有回应塞费的采访请求,但是在近日宣布将于 2024 年公布新的时间表[2]。

  01

  可控核聚变

  十年又十年

  ITER 实验设施位于法国南部,项目于 2006 年启动,最初计划在 2016 年开机,预算为 50 亿欧元(约合人民币 500 亿元)。这也是人类历史上规模最大的科研合作项目之一,共有 35 个国家参与,由中国、欧盟、印度、日本、韩国、俄罗斯和美国七方共同实施。中国承担了 ITER 约 9% 的工作,包括一些关键部件的研发生产。

  然而,这项工程的复杂程度一再超出了最初的预想。ITER 最近一次公布时间计划是在 2016 年,当时预计将在 2025 年启动实验,2035 年开始进行氘-氚聚变反应[3]。《科学美国人》报道指出,ITER 的许多核心部件交付时间都比预期晚了一两年,有的甚至还要更久。ITER 核心设备——托卡马克聚变反应堆原本计划在 2018 年开始组装,实际组装时间是 2020 年 7 月。

  2020 年发生的新冠疫情对世界各国的科研、生产和海运造成了冲击,进而影响了 ITER 的进度[4]。还有部分部件到位后出现问题,需要维修或更换。2022 年 1 月,法国核安全局(ASN)叫停了 ITER托卡马克的整体组装,认为它在支撑结构和辐射防护方面不符合安全标准[5]。ITER 表示将处理问题,确保相应部件达到设计要求。截至目前仍然没有公开信息说明组装何时重新开始。

  今年 1 月,ITER主任皮耶特罗·巴拉巴斯基(Pietro Barabaschi)对法新社(AFP)透露,ITER 可能无法在 2025 年如期启动[6]。《科学美国人》记者塞费批评 ITER 没有及时披露项目进度。根据他通过法律途径(lawsuit)获得的内部文件,ITER 的完工时间现无法确定,可能无法实现 2025 年点火的目标。

  设备更换和项目延期也导致 ITER 的开支越发高昂,最新的公开预算已高达 200 亿欧元(约合人民币 1565 亿元)。目前 ITER 项目网站上显示“最新时间表和预算计划仍在审核中”。

  02

  大科学项目的窘境

  ITER 又被称为最大的“人造太阳”。可控核聚变的反应原理与太阳内部情况类似:在炽热的温度下,氘和氚反应产生氦和中子,同时释放出大量能量。和现有基于核裂变的核电技术相比,可控核聚变不仅效率更高,产生辐射污染的风险也大大降低。它不产生难以处理的放射性核废料,并且由于反应条件苛刻,在设备故障时就会自发停止反应。

  但是,由于发生聚变反应的等离子体温度极高,性质不稳定,这个过程对反应条件的要求极其苛刻。可控核聚变的实现方案主要有三种方式:引力约束、惯性约束和磁约束,其中磁约束可控核聚变装置又叫作托卡马克(磁线圈环形真空室,Tokamak)。它的结构就像一个巨大的甜甜圈,借助强大磁场将发生核聚变反应的等离子体约束在内部,而不与容器发生直接接触。

  ITER 建成后将成为全世界最大的托卡马克装置,整体重量达 23000 吨[7]。环形空腔内的等离子体温度将达到 1.5 亿℃,达到太阳核心温度的 10 倍。空腔外部的超导磁体则需要在接近 -270℃(液氦温度)的极低温度运行。“冰火两重天”都不足以形容这样的温差。



  为了满足这样苛刻的实验条件,ITER 对工程技术的要求和建设成本非常高。所以,像 ITER 这样的大科学项目往往以多国合作的形式进行,分摊研发任务和资金投入,最终共享研究成果。然而,这样的合作模式也对管理造成了挑战,超支和屡屡“放鸽子”的状况并不罕见。一个有名的“鸽王”就是詹姆斯·韦布空间望远镜(JWST)。它由美国、欧洲和加拿大共同研发,最初计划用十年完成,最后花了二十年,预算也从 10 亿美元一路上涨到超过 100 亿美元。

  JWST 最终于 2021 年底发射升空,已经帮助天文学家作出了不少新的发现。但《科学美国人》报道依然忍不住提醒大家:JWST 就位后立即就能提供观测数据,而 ITER 启动之后还需要花十年时间反复实验,才能进行关键的氘-氚聚变反应。

  大科学装置失败的典型案例大概就是半途而废的美国超导超级对撞机(SSC)。该项目一共有包括中国在内的 15 个国家和地区参与,后来由于预算攀升被叫停。此时,项目建设已经花了 20 亿美元[9]。这一决策曾经使物理学界深感不安。知名美籍华裔物理学家李政道称,SSC 的停工之日是美国科学史上黑色的一天[9]。

  当年 SSC 的设计体量和反应能量达到欧洲大型强子对撞机(LHC)的 4 倍。SSC 主任罗伊·施维特斯(Roy Schwitters)认为,如果这个项目能坚持下去,物理学家或许能够提前十年发现希格斯玻色子[10]。

  03

  “制造太阳”的科学家

  尽管 ITER 项目一再受挫,但可控核聚变领域近年来仍然取得了许多重大进展。首先是实现了“能量净增益”,即输出能量大于输入能量。可控核聚变反应条件苛刻,启动和维持反应需要大量的能量,所以在过去六十多年中,反应消耗的能量一直比产出要多。直到 2022 年 12 月,美国劳伦斯利弗莫尔国家实验室(LLNL)团队才扭转局面。

  LLNL 基于惯性约束技术,在国家点火设施(NIF)输入 2.05 兆焦的能量,产生的能量为 3.15 兆焦,净增益超过了 1[11]。虽然这些能量只够烧开水,还远远无法满足应用需求,但这仍然是一项里程碑式的成就,被誉为“可控核聚变的圣杯”。在未来,ITER 的目标是将输出能量与输入能量的比值提升到 10 倍以上。
  为了实现稳定供应能源的前景,基于磁约束技术的ITER还需要满足两个条件:一是反应功率足够大;二是能够长时间运行。在这些方面,中国科学家也在不断刷新纪录。2022 年 10 月,中国环流器二号 M 装置(HL-2M)创造等离子体电流强度新纪录,达到 100 万安培(1 兆安)[12]。HL-2M 的等离子体电流能力理论上可达 2.5 兆安以上,而未来的可控核聚变能源需要在兆安级电流下稳定运行。

  在运行时间方面,今年 4 月,中国的“东方超环”全超导托卡马克核聚变实验装置(EAST)刷新稳态运行时间纪录,达到 403 秒,远高于它在 2017 年创下的 101 秒的纪录[13]。作为 ITER 中国工作组的重要成员,EAST 团队的成就也能为 ITER 的未来贡献一份力量。

  近年来,产业界也对可控核聚变表现出极大兴趣。据路透社报道,6 月 1 日,美国能源部宣布为 8 家相关企业拨款 4600 万美元,目前全世界已有三十多家企业投身核聚变研发,比如因开发 ChatGPT 而一举成名的 OpenAI 公司创始人山姆·奥特曼(Sam Altman)也投资了一家核聚变公司[14]。该报道认为,在政府和资本的大力支持下,可控核聚变产业预计在 2035 年到 2050 年逐渐成熟。

  可控核聚变的应用,这一次真的要实现了吗?无论 ITER 最终走向何方,它仍然间接促成了超导磁体、材料科学等多个领域的科研创新,参与各方也能从中积累国际合作、项目管理等方面的重要经验。但是,如果项目顺利进行,这样大体量的实验设备一定能带给我们更多的惊喜。

转载自科普中国,侵权联系删除